
Physically Uncloneable Functions

in the Universal Composition Framework

Christina Brzuska Marc Fischlin Heike Schröder Stefan Katzenbeisser

Darmstadt University of Technology
Center for Advanced Security Research Darmstadt

Abstract. Recently, there have been numerous works about hardware-assisted cryp-

tographic protocols, either improving previous constructions in terms of efficiency, or in

terms of security. In particular, many suggestions use Canetti’s universal composition (UC)

framework to model hardware tokens and to derive schemes with strong security guarantees

in the UC framework. Here, we augment this approach by considering Physically Unclone-

able Functions (PUFs) in the UC framework. Interestingly, when doing so, one encounters

several peculiarities specific to PUFs, such as the intrinsic non-programmability of such

functions. Using our UC notion of PUFs, we then devise efficient UC-secure protocols

for basic tasks like oblivious transfer, commitments, and key exchange. It turns out that

designing PUF-based protocols is fundamentally different than for other hardware tokens.

For one part this is because of the non-programmability. But also, since the functional

behavior is unpredictable even for the creator of the PUF, this causes an asymmetric sit-

uation in which only the party in possession of the PUF has full access to the secrets.

Keywords. Universal Composition, Physically Uncloneable Function, Oblivious Transfer,

Commitment, Key Exchange

1 Introduction

Cryptographic protocols which simultaneously satisfy high efficiency demands as well as strong
security requirements (like composable security), are scarce. One recent trend in this regard is
to use the potential of hardware components like signature cards [20], one-time programs [14],
standard smart cards [19], or even more complex tokens [22]. Most of these hardware-assisted
protocols actually achieve security in Canetti’s universal composition (UC) framework [4] and
thus provide strong security guarantees.

1

1.1 Physically Uncloneable Functions

Here we consider another type of hardware component which recently gained a lot of atten-
tion because of the irresistible progress in their realization: Physically Uncloneable Functions
(PUFs) [29, 28]. Basically, a PUF is a function derived through a complex physical manu-
facturing process such that the behavior of the PUF is hard to clone. The PUF itself can be
evaluated by a physical stimulus (aka. challenge) on which it provides a noisy response.

Modeling PUFs appropriately is a highly non-trivial task. Most importantly, there are
different types of PUFs with different (physical) properties. Furthermore, there does not seem
to be a general agreement upon common security properties of PUFs even for a single type
only (e.g., whether a PUF is one-way or not, or if the output is pseudorandom). We refer the
reader to [31, 25] for a comprehensive overview. We thus consider a very minimalistic model
which basically says that only the party in possession of a PUF can evaluate it by sending
some stimulus to the PUF and observing the output, and where learning outputs for some
stimuli does not facilitate the task of predicting the function’s output for other stimuli.

There have been several approaches to define PUFs cryptographically [29, 17, 12, 2, 31,
11, 32]. However, these definitions usually are either rather informal, or follow the more strin-
gent game-based approach, but stipulate uncloneability and tamper-resistance as an external
property “outside of the game”. A recent exception is the work of Armknecht et al. [1] which
provides a game-based definition for uncloneability on a physical level. In the UC world, such
features are more handy to specify. We hence follow previous approaches for other token-based
protocols to model PUFs formally in the UC framework, exposing several peculiarities for this
kind of hardware.

1.2 PUFs and the UC Framework

The UC Framework. The UC framework supports an easy modeling of tamper-proof
hardware tokens via ideal functionalities. Roughly, the ideal functionality captures the ab-
stract security properties of the token, and one considers a hybrid world in which real-world
protocols and parties also have access to this ideal functionality (and thus the token). This is
the approach which has been used extensively in the literature [22, 19, 26, 16, 15] and which
we also use to model PUFs in the UC framework, in particular, to model restricted access
depending on possession of the token or uncloneability.

In its original form the hybrid model supports the decomposition of cryptographic tasks
into basic building blocks and to conclude security of protocols which are composed out of such
building blocks. Loosely speaking, Canetti’s composition theorem —or, actually a corollary of
a more general statement— says that, if a protocol πF UC-securely realizes some functionality
G in the hybrid world with efficient functionality F , and some protocol ρ UC-securely realizes
F , then the composed protocol πρ which invokes ρ whenever π would call F , also UC-securely
realizes G.

2

PUFs in the UC Framework. Our ideal functionality for PUFs only allows the party
in possession to stimulate it in order to retrieve a response, thus ensuring restricted access.
Uncloneability is enforced through unpredictability. Parties can hand over the PUF to other
parties, but then we allow the adversary temporary access before the PUF reaches the re-
cipient. This models the classical example of PUF-augmented credit cards, sent via postal
service, which are read out before getting delivered. As in other works about hardware based
tokens, we assume some kind of tamper-evidence in the sense that the receiver can later verify
the authenticity and integrity of the PUF. We note that this need not be ensured by the PUF
technology itself. One may also consider reliable delivery (in which case the adversary may
have read-only access during the manufacturing process).

Our ideal functionality covers different kinds of PUF technologies and comprises even PUFs
with small input or output size (in which case unpredictability should be understood relative
to the small output size). We note that for designing secure protocols, the intermediate access
of the adversary also necessitates that the challenge space of the PUF is super-polynomial;
else the adversary could clone the PUF easily. This domain requirement may currently not
be true for all kinds of PUF technology; we comment on this at the end of the paper.

The usage of hardware components in the UC context, especially of PUFs, causes several
unpleasant side effects, though. At foremost, PUFs are not known to be implementable by
probabilistic polynomial-time (PPT) Turing machines; the manufacturing process seems to
be inherently based on physical properties. Hence, while the claims in the hybrid model are
technically sound, any realization in practice through actual PUFs leaves a gap in the security
claim of the composed protocol, as, strictly speaking, the composition theorem only applies
to probabilistic polynomial-time computable functionalities F . Fortunately, Canetti [4] proves
the composition theorem to hold for a broader class of interactive Turing machines, and we
sketch in Appendix B that the same holds for PUFs.

The uninstantiability of PUFs through efficient algorithms causes another issue when it
comes to complex cryptographic protocols. For any PUF-based protocol relying on further
cryptographic assumptions like the hardness of computing discrete logarithms, the assumption
would need to hold relative to the additional computational power given through PUFs. That
is, the underlying problem must be hard to solve even for attackers with “more than probabilis-
tic polynomial-time power”. It is therefore advantageous to avoid additional cryptographic
assumptions in protocols and provide solutions with statistical security.

Non-Programmability. For PUFs, another aspect is the intrinsic non-programmability
of these tokens: Even the manufacturer usually has no control over the functional behavior.
Hence, the ability of the ideal-world simulator to adapt the outcome of a PUF measure-
ment adaptively, as guaranteed when modeling the PUF through an ideal functionality in the
hybrid world, appears to be exceedingly optimistic. A similar observation has been made
by Nielsen [27] about the (non-)programmability of random oracles in the UC framework.

3

Roughly, Nielsen takes away the ability of the simulator to program the random oracle by
giving the environment direct access to the random oracle. To support the argument in fa-
vor of non-programmable PUFs we also note that for random oracles it is straightforward to
program consistently given a partial view of the function for other values, namely, by provid-
ing independent random values; for PUFs this is less clear since one would need to take the
(not necessarily efficiently computable) conditional distribution of the specific PUF type into
account.

We adopt Nielsen’s approach and augment the environment’s ability by giving it also access
to the concrete PUF instantiation used in a protocol. Unlike in the case of the publicly available
random oracle, though, the environment can only access this PUF when it is in possession of
the adversary, i.e., we assume that a PUF, once in possession of the user, can only be accessed
by this user. This approach corresponds to the case that the user somewhat prevents further
unauthorized access then. In a stronger version one could also allow further “uncontrolled”
interaction between the environment, i.e., other protocols, and the PUF even then. This
would somehow correspond to a permanently shared PUF functionality in the GUC model
[5]. However, many advantages of deploying PUFs for designing efficient protocols would then
disappear. With the restriction on temporary access we can still devise efficient solutions, e.g.,
circumventing impossibility results for UC commitment schemes in the plain model [6] and
for GUC commitment schemes in the common reference string model [5].

1.3 PUF-based Protocols in the UC Framework

We finally exemplify the usability of our PUF modeling by presenting PUF-based protocols
for three classical areas: oblivious transfer (OT), commitments, and key exchange. Our
protocols are UC-secure in the hybrid world (where we grant the environment access to the
PUF instantiation as described above), and typically require only a few operations besides
PUF evaluations. In particular, all protocols require only sending one party a token in the
first step. The protocols do not rely on additional cryptographic assumptions, except for
authenticated channels.

Designing PUF-based protocols is not just a matter of adopting other token-based solu-
tions. One reason is clearly the non-programmability property which is usually not stipulated
for other tokens (cf. [22, 14]). In fact, most protocols take advantage of the ability to adapt
the token’s outputs on the fly. But more importantly, the main difference between PUFs and
other tokens is that PUFs are by nature even unpredictable for the manufacturer. It follows
that only the party in possession of the PUF has full access to the secrets; other parties may
only draw from a small set of previously sampled values. In comparison, for the wrapper
tokens [22], for example, the creator still knows the program placed inside the token, and the
token holder can fully access this program in a black-box way. Hence, both parties somehow
share a complete view of the secret. For PUFs the situation is rather “asymmetric”.

Our oblivious transfer protocol bears some similarity to a PUF-based protocol of Rührmair

4

[30]. His protocol, however, has a high round complexity due to an interactive hashing step,
and does not provide a formal security proof. Still, [30] points out that, using symmetry of
oblivious transfer [40] in the sense that one can change the roles of sender and receiver, one
obtains an oblivious transfer protocol in which the other party sends the PUF. We confirm
that this symmetry also holds in the UC setting.

Designing a UC-secure commitment scheme with the help of our PUFs turns out to be
quite challenging. The non-programmability of our PUFs inhibits equivocality, a property
which allows to adapt committed values appropriately, and which is usually required for such
commitments [6]. We therefore use our PUF-based oblivious transfer protocol to derive a
UC-secure bit commitment scheme. Interestingly, while the standard construction of commit-
ment schemes out of OT [9] uses cut-and-choose techniques with a linear number of oblivious
transfers, our transformation does not add any significant overhead. It only needs a single
execution of the OT protocol and one extra message. We were not able to trace this idea back
to any previous work.

A noteworthy aspect is that, while our OT protocol only withstands static corruptions,
our derived commitment scheme is secure in presence of adaptive corruptions. The reason is
that for commitments, in contrast to OT, the receiver does not obtain any external input;
the values used in the OT sub protocol are chosen internally. This facilitates the simulation
of the receiver’s side. Hence, if we use our transformation we derive an adaptively secure
commitment protocol from a concrete statically secure OT protocol!

Finally, our key exchange protocol follows the folklore approach of using essentially the
PUF to transport the key, only that our protocol is stated and formalized in the UC framework.
That is, the sender samples some challenge-response pairs, sends the PUF, and later reveals
a challenge to the receiver who recoves the image with the help of the PUF. Both parties
use the images as the key, after applying a fuzzy extractor for error corretion and smoothing
the output. It is clear that for a key exchange protocol where only one party sends a PUF,
some additional, one-sided authentication mechanism is required. Else the adversary with
temporary access to the PUF could impersonate the honest sender.

All our protocols allow to re-use the PUF for multiple executions. By the unpredictable
nature of PUFs, however, it is clear that the number of executions must be fixed in advance
and must be known to the parties: The sender, once having sent the PUF, cannot access
the PUF anymore and must thus challenge the PUF before sufficiently often, unless the PUF
is frequently exchanged or further PUF tokens are sent. An interesting feature of PUFs is
that, unlike other hardware tokens (e.g., [22]), protocols using PUFs are automatically secure
against reset attacks because they implement (noisy) functions.

5

2 Physically Uncloneable Functions

A Physically Uncloneable Function (PUF) is a source of randomness that is implemented
by a physical system. Roughly speaking, the randomness of PUFs relies on uncontrollable
manufacturing variations during their fabrication. For PUF evaluation, the physical system
is queried with a stimulus, usually called challenge. The device then produces a physical
output, which is usually referred to as response. A pair of a stimulus and an output is called
a challenge/response pair (CRP). Furthermore, a PUF, being a physical system, might not
necessarily implement a mathematical function, i.e., querying the PUF twice on the same
challenge may yield distinct responses. However, we require such “noise” to be bounded so
that the two responses are closely related in terms of distance.

2.1 Defining PUFs

A PUF-family P consists of two (not necessarily efficient) algorithms Sample and Eval. The
index sampling algorithm Sample which obtains as input the security parameter and returns
as output an index id of the PUF family corresponds to the PUF fabrication process. The
evaluation algorithm Eval takes as input a challenge c, evaluates the PUF on c, and generates
as output the corresponding response r.

Note that we require the challenge space to be equal to a full set of strings of a certain
length. For some classes of PUFs, this is naturally satisfied, for example arbiter PUFs and
SRAM PUFs (see [25]). For others types this can be achieved through appropriate encoding,
as for angles in optical PUFs.

Definition 2.1 (Physically Uncloneable Functions) Let rg be the dimension of the range
of the PUF responses of the PUF family, and let dnoise be a bound on the PUF’s noise. A pair
P = (Sample,Eval) is a family of (rg, dnoise)-PUFs if it satisfies the following properties:

Index Sampling. Let Iλ be an index set. The sampling algorithm Sample outputs, on input
the security parameter 1λ, an index id ∈ Iλ. We do not require that the index sampling
can be done efficiently. Each index id ∈ Iλ corresponds to a set Did of distributions. For
each challenge c ∈ {0, 1}λ, Did contains a distribution Did(c) on {0, 1}rg(λ). We do not
require that Did has a short description or an efficient sampling algorithm.

Evaluation. The evaluation algorithm Eval gets as input a tuple (1λ, id, c), where c ∈ {0, 1}λ.
It outputs a response r ∈ {0, 1}rg(λ) according to distribution Did(c). It is not required
that Eval is a PPT algorithm.

Bounded Noise. For all indices id ∈ I, for all challenges c ∈ {0, 1}λ, we have that when
running Eval(1λ, id, c) twice, then the Hamming distance of any two outputs r1, r2 of the
algorithm is smaller than dnoise(λ).

6

Instead of Did(c), we usually write PUFid(c). Moreover, if misunderstandings are unlikely to
occur, we write D(c) instead of Did(c) and PUF instead of PUFid. Finally, we usually write
rg instead of rg(λ) and I instead of Iλ.

2.2 Security of PUFs

Various security properties of PUFs have been introduced in the literature (see [25, 31] for
overviews) such as unpredictability, uncloneability, bounded noise, uncorrelated outputs, one-
wayness, and tamper-evidence. We give a detailed analysis of these properties in Appendix C
as well as the relation to our security notions. The main security properties of PUFs are
uncloneability and unpredictability. Unpredictability is covered via an entropy condition on
the PUF distribution. This condition also implies mild forms of uncloneability as well as
uncorrelated outputs, see Appendix C.2. Moreover, one usually requires that tampering with
PUFs can be detected easily, the idea being that a user does not use the PUF anymore after
detecting it has been tampered with. Our UC-functionality will cover this property implicitly,
as we permit the adversary black-box access to the PUF and the choice of delivering the PUF
or not. Tampering with the PUF is treated as not delivering it. For an explicit treatment of
tamper-evidence, see Appendix C.5.

We will now turn to our main security definition of PUFs, namely the unpredictability.
The behavior of the PUF on input a challenge c should be unpredictable, i.e., have some
significant amount of intrinsic entropy, even if the PUF has been measured before on several
challenge values. Here, (conditional) min-entropy is a main tool. It indicates the residual
min-entropy on a response value for a challenge c, when one has already measured the PUF
on (not necessarily different) challenges c1, ..., c` before. Since the random responses are not
under adversarial control we can look at the residual entropy for the answer to r by taking
the (weighted) average over all possible response values r1, ..., r`. Demanding that a PUF has
a certain average min-entropy [10] is weaker than asking for all possible responses r1, ..., r`,
that the residual entropy remains above a certain level. This weaker requirement suffices for
our purposes. However, the challenges c are chosen by the adversary such that we will ask the
average min-entropy to be high for all challenges and defined by the maximal probability of a
possible response r.

Definition 2.2 (Average Min-Entropy) The average min-entropy of PUF(c) conditioned
on the measurements of challenges C = (c1, . . . , c`) is defined by

H̃∞(PUF(c)|PUF(C))

:= − log
(
Eri←PUF(ci)

[
max
r

Pr[PUF(c) = r|r1 = PUF(c1), . . . , r` = PUF(c`)]
])

:= − log
(
Eri←PUF(ci)

[
2−H∞(PUF(c)|r1=PUF(c1),...,r`=PUF(c`))

])

7

where the probability is taken over the choice of id from I and the choice of possible PUF re-
sponses on challenge c. The term PUF(C) denotes a sequence of random variables PUF(c1), ...,
PUF(c`) each corresponding to an evaluation of the PUF on challenge ck.

We also write H̃∞(PUF(c)|C) as an abbreviation for H̃∞(PUF(c)|PUF(C)). We now turn
to our definition of unpredictability, which is derived from the notion of unpredictability for
random variables.

Definition 2.3 (Unpredictability) We call a (rg, dnoise)-PUF family P = (Sample,Eval)
for security parameter 1λ is (dmin(λ),m(λ))-unpredictable if for any c ∈ {0, 1}λ and any chal-
lenge list C = (c1, . . . , c`), one has that, if for all 1 ≤ k ≤ ` the Hamming distance satisfies
disham(c, ck) ≥ dmin(λ), then the average min-entropy satisfies H̃∞(PUF(c)|PUF(C)) ≥ m(λ).
Such a PUF-family is called a (rg, dnoise, dmin,m)-PUF family.

Note that one could also define a computational version of unpredictability via computa-
tional min-entropy (aka. HILL entropy, named after [18]) where the entropy is defined via the
entropy of computationally indistinguishable random variables. All proofs considered in this
paper carry through when replacing statistical by computational min-entropy; we nonetheless
use the statistical variant for sake of simplicity. As explained in the introduction, indistin-
guishability for defining computational min-entropy then needs to be considered with respect
to distinguishers that have PUF power (see also Section B), and not with respect to mere
PPT algorithms.

Also, one could define unpredictability in terms of a game where an efficient adversary,
after seeing some challenge/response pairs, tries to predict the response for another challenge
which is not within close distance to the previous queries (see Appendix C.2); the success
probability should then be negligible. Clearly, the PUF would need super-logarithmic min-
entropy in the above sense to make it unpredictable according to this game, but the lower
bound on the entropy would vary with the adversary. We do not take this approach because
the fuzzy extractors, which are necessary to eliminate the noise of a PUF, usually need a fixed
lower bound on the min-entropy in order to be applicable. Also, while it is easy to incorporate
a distributional property as above into the ideal functionality, using game-based properties to
specify abstract and ideal security requirements appears to be very peculiar.

3 PUFs and Fuzzy Extractors

By nature, PUF evaluation is noisy, so that same stimuli results in closely related but dif-
ferent outputs. We use fuzzy extractors of Dodis et al. [10] to convert noisy, high-entropy
measurements of PUFs into reproducible random values.

8

3.1 Fuzzy Extractors

A fuzzy extractor consists of a pair of algorithms (Gen,Rep). The generation algorithm Gen
takes as input a noisy measurement w and generates as output a secret st together with helper
data p. The helper data can be stored publicly, since it does not reveal information about the
secret. It is later used to reproduce the same secret st from related measurements. That is,
the reproduction algorithm Rep takes as input a noisy measurement w′ and helper data p. If
w and w′ are sufficiently close, Rep gives the same reply st. The value st is distributed almost
uniformly and thereby allows to be used for cryptographic purposes.

In the following we use U` to denote the uniform distribution on `-bit binary strings.
Furthermore, a set M with a distance function dis : M ×M ← R+ = [0,∞) is called a
metric space. The statistical distance SD of two probability distributions A and B is defined
as SD(A,B) = 1

2

∑
v |Pr(A = v)− Pr(B = v)|.

Definition 3.1 Let dis be a distance function for metric space M. A (m, `, t, ε)-fuzzy extrac-
tor consists of two efficient randomized algorithms (Gen,Rep):

Gen: The algorithm Gen outputs on input w ∈ M a secret string st ∈ {0, 1}` and a helper
data string p ∈ {0, 1}∗.

Rep: The algorithm Rep takes an element w′ ∈ M and a helper data string p ∈ {0, 1}∗ and
outputs a string st.

Correctness: If dis(w,w′) ≤ t and (st, p)← Gen(w), then Rep(w′, p) = st.

Security: For any distribution W on the metric space M of min-entropy m, the first compo-
nent of the random variable (st, p), defined by drawing w according to W and then apply-
ing Gen, is distributed almost uniformly, even if p is observed, i.e., SD((st, p), (U`, p)) ≤
ε.

3.2 Applying Fuzzy Extractors to PUFs

We now determine parameters to combine a PUF and the fuzzy extractor in order to achieve
almost uniformly random values. Let λ be the security parameter. We let the parame-
ters of the fuzzy extractor depend on the parameters of the PUF. Assume that we have a
(rg(λ), dnoise(λ), dmin(λ),m(λ))-PUF family with dmin being in the order of o(λ/ log λ). We
now determine the corresponding parameters for the fuzzy extractor as follows. Let `(λ) := λ
be the length parameter for value st. Let ε(λ) be a negligible function and let t(λ) = dnoise(λ).
For each λ, let (Gen,Rep) be a (m(λ), `(λ), t(λ), ε(λ))-fuzzy extractor. The metric spaceM is
{0, 1}rg(λ) with Hamming distance disham.1

1Note that such fuzzy extractors only exist if rg(λ) and m(λ) are sufficiently large. In order to achieve this,
several PUFs can be combined. When combining two PUFs of the same family, rg gets doubled and so does m.

9

Definition 3.2 If a PUF and a fuzzy extractor (Gen,Rep) satisfy the above requirements,
then they are said to have matching parameters.

If a PUF and a fuzzy extractor have matching parameters, then the properties well-spread
domain, extraction independence and response consistency follow.

Well-Spread Domain: For all polynomials p(λ) and all sets of challenges c1, ..., cp(λ), the
probability of a random challenge to be within distance smaller dmin of any of the ck is
negligible.

Extraction Independence: For all challenges c1, ..., cp(λ), it holds that the PUF evaluation
on a challenge c with dis(ck, c) > dmin for all 1 ≤ k ≤ p(λ) and subsequent application
of Gen yields an almost uniform value st even for those who observe p.

Response Consistency: The fuzzy extractor helps to map two evaluations of the same PUF
to the same random string, i.e., if PUF is measured on challenge c twice and returns r
and r′, then for (st, p)← Gen(r), one has st← Rep(r′, p).

We now prove that a PUF and a fuzzy extractor with matching parameters have a well-spread
domain and meet extraction independence as well as response consistency.

Consider the well-spread domain property: the number of challenges in {0, 1}λ within
distance smaller dmin of at least one of the ck can be upper bounded by the number of elements
in a ball of radius dmin multiplied with the number p(λ) of challenges, i.e.,

p(λ)

dmin(λ)∑
i=1

(
λ

i

)
≤ p(λ)λdmin(λ),

which is a negligible fraction of 2λ, as the term

p(λ)λdmin(λ)2−λ = p(λ)2dmin(λ) log λ−λ

is negligible if dmin(λ) = o(λ/ log λ).
For extraction independence, we observe that H∞(PUF(c)|C) is greater than m(λ). Thus,

evaluating a PUF on challenge c corresponds to drawing a random value r from a distri-
bution on the metric space {0, 1}rg(λ) which has entropy greater than m(λ). Hence, the
distribution of the random variable (st, p) defined by drawing a response r from PUF(c), con-
ditioned on (r1, c1), ..., (rp(λ), cp(λ)) and applying Gen to it, is statistically close to uniform,
i.e., SD((st, p), (Uλ, p)) ≤ ε by definition of the fuzzy extractor.

Thus, if there are PUFs with m(λ) being non-negligible they can be combined to a useful PUF-family — even if
a PUF-family has less than one bit entropy, it still can be combined to obtain a good PUF-family with outputs
which has high entropy of many bits. Thus, we may assume that the PUF has corresponding parameters.

10

Finally, for the response consistency, we notice that dmin(λ) = t(λ). Thus, the bounded
noise property of the PUF assures that two PUF evaluations yield responses r, r′ with distance
smaller than t(λ). Thus, the properties of the fuzzy extractor assure that for (st, p)← Gen(r),
one has that Rep(p, r′) outputs st.

4 Universally Composable Security and PUFs

We model PUFs in the universal composition framework introduced by Canetti in [4]. Note
that we use, among other things, well-studied UC basics, such as authenticated message
transmissions, which we now shortly review.

4.1 Authenticated Communication in UC

The UC functionality Fauth for authenticated message transmission [4] is presented in Figure 1.
The functionality prevents tampering and/or injecting messages. That is, a party Pj will
receive a message msg from a party Pi only if Pi has sent msg to Pj .

Fauth runs with parties P1, ..., Pn and adversary S.
• Whenever Pi writes (sendauth, sid, ssid, Pi, Pj ,msg) on Fauth’s input tape then Fauth

proceeds with the following actions:
? Store the tuple (sid, ssid, Pi, Pj ,msg) and output (sendauth, sid, ssid, Pi, Pj ,msg)
to the adversary S.
• Whenever S writes (sendauth, sid, ssid, Pi, Pj ,msg) on Fauth’s input tape check if a
tuple (sid, ssid, Pi, Pj ,msg) is stored. If so, write (sendauth, sid, ssid, Pi, Pj ,msg) on
Pj ’s communication input tape. Else, ignore the input.

Figure 1: The ideal functionality for message authentication adapted from [4].

4.2 Modeling PUFs in UC

In the following we propose an ideal functionality FPUF that will model PUFs. The function-
ality is presented in Figure 2 and handles the following operations: (1) a party Pi is allocated
a PUF; (2) Pi can query the PUF; (3) Pi gives the PUF to another party Pj who can also
query the device; (4) an adversary can query the PUF during transition.

The functionality FPUF maintains a list L of tuples (sid, Pi, id, τ) where sid is the (public)
session identifier and id is the (internal) PUF-identifier, essentially describing the output
distribution. Note that the PUF itself does not use sid. The element τ ∈ {trans(Pj), notrans}
denotes whether the PUF is in transition to Pj . For trans(Pj), indicating that the PUF is in
transition to Pj , the adversary is able to query the PUF. In turn, if it is set to notrans then
only the possessing party can query the PUF.

11

The PUF functionality FPUF is indexed by the PUF parameters (rg, dnoise, dmin,m)-PUF
and gets the security parameter λ in unary encoding as additional input. It is required
to satisfy the bounded noise property for dnoise(λ) and the unpredictability property for
(dmin(λ),m(λ)). This enforces that the outputs obey the basic entropic requirements of PUFs
(analogously to the requirement for the random oracle functionality to produce random and
independent outputs). We write FPUF and FPUF(rg, dnoise, dmin,m) interchangeably.

FPUF(rg, dnoise, dmin,m) receives as initial input a security parameter 1λ and runs with parties
P1, ..., Pn and adversary S.
• Whenever a party Pi writes (initPUF, sid, Pi) on the input tape of FPUF then FPUF

checks whether L already contains a tuple (sid, ∗, ∗, ∗, ∗):
? If this is the case then turn into the waiting state.
? Else, draw id ← Sample(1λ) from the PUF-family. The functionality FPUF puts
the following tuple in L: (sid, id, Pi, ∗, notrans) and writes (initializedPUF, sid) on the
communication input tape of Pi.
• Whenever a party Pi writes (evalPUF, sid, Pi, c) on FPUF’s input tape then FPUF first
checks, if there exists a tuple (sid, id, Pi, notrans) in L:
? If this is not the case then turn into the waiting state.
? Else, run r ← Eval(1λ, id, c) and write (eval′edPUF, sid, c, r) on Pi’s communication
input tape.
• Whenever a party Pi sends (handoverPUF, sid, Pi, Pj) to FPUF then FPUF first checks, if
there exists a tuple (sid, ∗, Pi, notrans) in L:
? If this is not the case then turn into the waiting state.
? Else, modify the tuple (sid, id, Pi, notrans) to the updated tuple (sid, id,⊥, trans(Pj)).
Write invokePUF(sid, Pi, Pj) on S’s communication input tape to indicate that a
handoverPUF occurs between Pi and Pj .
• Whenever the adversary writes (evalPUF, sid,S, c) on the input tape of FPUF then FPUF

first checks, if L contains a tuple (sid, id,⊥, trans(∗)):
? If this is not the case then turn into the waiting state.
? Else, run r ← Eval(1λ, id, c) and return (eval′edPUF, sid, c, r) to S.
• Whenever the adversary writes (readyPUF, sid,S) on FPUF’s input tape then FPUF

searches for a tuple (sid, id,⊥, trans(Pj)) in L:
? If such a tuple does not exist then turn into the waiting state.
? Else, modify the tuple (sid, id,⊥, trans(Pj)) to the updated tuple (sid, id, Pi, notrans).
Write the message (handoverPUF, sid, Pi) on Pj ’s communication input tape and store
the tuple (receivedPUF, sid, Pi).
• Whenever the adversary sends (receivedPUF, sid, Pi) to FPUF, FPUF checks if a tuple
(receivedPUF, sid, Pi) has been stored. If so, it writes this tuple to the communication
input tape of Pi. Else, FPUF turns into the waiting state.

Figure 2: The ideal functionality FPUF for PUFs.

Also note that our definition requires that a PUF is somehow certified. That is, the
adversary cannot replace a PUF sent to an honest party by a fake token including some

12

“software emulation”; the adversary can only measure the PUF when in transition. The
receiver can verify the constitution and authenticity of the received hardware.

4.3 Non-Programmability

As explained in the introduction we envision a non-programmable version of PUFs. The func-
tionality above, if used in the standard way within the hybrid model, would be programmable,
though, because the environment would not have direct access (even if the PUF is in possession
of the adversary). One way to enforce non-programmability is to switch to the extended UC
(EUC) model [5] where all parties, including the environment, share the above functionality.
The PUF could then also be evaluated by the environment in which case the simulator is
informed about the challenge and response.

To simplify we linger within the basic UC framework and instead allow the environment
to dispatch special PUF queries to the adversary/simulator. This query needs to be answered
faithfully by forwarding it to a genuine PUF instance, and the response is handed back to
the environment. Put differently, we put some restriction on the how the simulator behaves,
formally giving a UC-security proof which would transfer to the EUC model.

5 Oblivious Transfer with PUFs

In a 1-out-of-2 oblivious transfer (OT) protocol the sender possesses two secrets s0, s1 and the
receiver holds a selection bit b ∈ {0, 1}, thereby choosing one of the two secrets. A 1-out-of-2
OT-protocol assures that at the end of the protocol execution, the receiver learns the secret
sb, but nothing about s1−b, and the sender does not learn anything about the selection bit b.

Oblivious Transfer is a widely used cryptographic primitive for many cryptographic ap-
plications [23, 9, 13]. However, in many of those applications a bottleneck of OT is the
computational requirements since, for instance, several public key operations are necessary.
We here show how to avoid the number of public key operations by adopting hardware. In the
following, we recall the oblivious transfer ideal functionality and then provide a PUF-based
oblivious transfer protocol.

As noted in the introduction, we envision a scenario in which the PUF is used multiple
times. In the plain UC model, however, a fresh PUF would need be sent for each OT execution.
An alternative would be to switch to the joint-state theorem (JUC) [8] for the UC framework.
However, JUC applies a transformation to the original protocol, and if a single session of a
PUF protocol requires to hand over a PUF once, the JUC transformation would also require
a handover per session. Nothing would be gained. Thus, we define and analyze multi-session
protocols instead of the more common one-session protocols.

13

5.1 The Oblivious Transfer Ideal Functionality

1-out-of-2 oblivious transfer is an interaction between a sender Pi and a receiver Pj where the
environment Z provides Pi with two inputs s0, s1 and Pj with an input bit b. As soon as both
parties provided their inputs (and the simulator S allows delivery), the ideal functionality
returns the secret sb to the receiver. The ideal functionality for oblivious transfer FOT is given
in Figure 3. We stress that this functionality only supports static corruption and can be used
a bounded number of times, and only by the parties which have exchanged the PUF. Each
execution will be accompanied by a unique sub session identifier ssid.

FOT is parameterized by an integer N and receives as input a security parameter 1λ, and
runs with parties P1, ..., Pn and adversary S. The functionality initially sets (n, S,R) =
(1,⊥,⊥).

In the following, the functionality ignores any input if n > N , or if n > 1 and (S,R) 6=
(Pi, Pj) for the parties’ identities (Pi, Pj) in the input. Else,
• Whenever Pi writes (sendOT, sid, ssid, Pi, Pj , (s0, s1)) with s0, s1 ∈ {0, 1}λ ∪
{⊥} on FOT’s input tape, FOT stores (sendOT, sid, ssid, Pi, Pj , (s0, s1)) and writes
(sendOT, sid, ssid, Pi, Pj) to the communication input tape of S. The functionality
increments n to n+ 1 and stores (S,R) = (Pi, Pj) if n = 2 now.
• Whenever Pj writes (choose− secretOT, sid, ssid, Pi, Pj , b) on the input tape of FOT,
the functionality FOT stores this tuple and writes (choose− secretOT, ssid, sid, Pi, Pj)
on the input tape of S.
• When S writes (deliverOT, sid, ssid, Pi, Pj) on FOT’s input communi-
cation tape then FOT checks if tuples (sendOT, sid, ssid, Pi, Pj , (s0, s1))
and (choose− secretOT, sid, ssid, Pi, Pj , b) have been stored. If so, write
(deliverOT, sid, ssid, Pi, Pj , sb) on the input communication tape of Pj .

Figure 3: The ideal functionality for oblivious transfer adapted from [4].

5.2 Oblivious Transfer Scheme

In Figure 4, we provide an oblivious transfer protocol. For simplicity of exposition, we use the
following notation. For a possibly empty set C we let dis(c, C) > dmin denote the check that
each element ci in C satisfies the bound dis(c, ci) > dmin. If not, we assume that the corre-
sponding party aborts. Also, when interacting with the PUF (functionality), we simply write
for example r ← (evalPUF, sid0, Pi, c) to denote the fact that, for a call (evalPUF, sid0, Pi, c)
the functionality has replied with (eval′edPUF, sid0, c, r). Here, sid0 is the session identifier
for FPUF, as opposed to sid and ssid for the oblivious transfer protocol.

We note that the protocol does not achieve perfect completeness in the sense that exe-
cutions between honest parties may fail. The probability for this is negligible, though. This
follows straightforwardly again from the fact that the domain is well-spread: All (at most

14

polynomial) challenges are independent random values such that one is within small distance
of the others with negligible probability only. If all challenges are sufficiently far apart, the
receiver always obtains the correct value.

Sender Pi session sid Receiver Pj

(initPUF, sid0, Pi, λ)

k = 1, ..., N : ck←{0, 1}λ

rk ← (evalPUF, sid0, Pi, ck)

C := ∅
(handoverPUF, sid0, Pi, Pj)←−−−−−−−−− L := (c1, r1, ..., c`, r`)

C := ∅
Repeat at most N times with fresh ssid

Input: s0, s1 ∈ {0, 1}λ, sid Input: b ∈ {0, 1}, sid

x0, x1
$← {0, 1}λ

(sendauth, sid, ssid, Pi, Pj , (x0, x1))−−−−−−−−−−−→ Draw (c, r)
$← L

v := c⊕xb, c′ := c⊕x0⊕x1

dis(v ⊕ x0, C) > dmin ?
(sendauth, sid, ssid, Pi, Pj , v)

←−−−−−−−−−−− dis(c, C) > dmin ?

dis(v ⊕ x1, C) > dmin ? dis(c′, C) > dmin ?

Add v ⊕ x0, v ⊕ x1 to C Add c, c′ to C
r′0 ← (evalPUF, sid0, Pi, v ⊕ x0) Delete (c, r) in L
r′1 ← (evalPUF, sid0, Pi, v ⊕ x1)
(st0, p0)← Gen(r′0)

(st1, p0)← Gen(r′1)

S0 := s0 ⊕ st0, S1 := s1 ⊕ st1
(sendauth, sid, ssid, Pi, Pj , (S0, p0,S1, p1))−−−−−−−−−−−→ st′b ← Rep(r, pb)

sb = Sb ⊕ st′b

Figure 4: Oblivious transfer Scheme with PUFs.

We now sketch the security arguments for the OT-protocol in Figure 4, i.e., at the end
of the OT protocol (1) a malicious sender learns nothing about the bit b and (2) a malicious
receiver learns only the secret sb and remains oblivious about s1−b. For case (1), the receiver
chooses the challenge c at random. Thus, v = c ⊕ xb hides xb information-theoretically and
thus also b. We now consider case (2). For simplicity, assume that b = 0. Then, the sender
shall remain oblivious about any information about s1. If st1 looks uniform to the sender,
then s1 is information-theoretically hidden. If the fuzzy extractor and the PUF have matching
parameters (see Definition 3.2), then with overwhelming probability this is the case, as — due
to the well-spread domain property (see Subsection 3.2) — the probability that the receiver
queried the PUF on values ck with disham(ck, v ⊕ x1) < dmin is negligible, and the checks on
the sender side about list L provided that the sender does not reveal PUF responses to critical

15

challenges.

Theorem 5.1 Assuming that (Gen,Rep) is a (m, `, t, ε)-fuzzy generator, and PUF = (Sample,
Eval) is a PUF-family with matching parameters (see Definition 3.2), then protocol PUFOT
securely realizes the functionality FOT in the FPUF-hybrid model.

Security holds in a statistical sense, i.e., the environment’s views in the two worlds are
statistically close. This remains true for unbounded algorithms A,S, and Z, as long as the
number of PUF evaluations is polynomially bounded. The proof is delegated to Appendix A.

5.3 Oblivious Transfer with Sender-PUF

Our OT-protocol requires the receiver to send a PUF to the sender. Sometimes it may be
desirable to have the sender prepare the PUF, though. This can be achieved by switching
the roles of the sender and the receiver via the protocol by Wolf and Wullschleger [40], but
at the expense of having to run linear many OT executions for strings of length λ. This is
unavoidable since the receiver in an OT-protocol just enters a bit such that, when acting as a
sender, it can only transmit a single bit. In this protocol the sender of the outer OT-protocol
acts as a receiver in the inner OT-protocol, thus sending the PUF.

The protocol in [40] requires only a single round of additional communication. It is UC-
secure in the FOT-hybrid world and inherits the security properties (statistical vs. computa-
tional security, and adaptive vs. static corruptions). With a linear overhead [3] and another
extra round of communication one can then get an OT-protocol for strings, which is also
UC-secure in the FOT-hybrid world for bit-functionality FOT. The final protocol is now a
UC-secure OT-protocol for strings with linear many calls to FOT, a few extra rounds, and
inheriting all security characteristics from FOT.

6 PUF-based Commitment Scheme

A commitment scheme is a two-party protocol between a sender and a receiver where the
sender (also called committer) first sends a disguised version of the value to the receiver such
that, later, only this value can be revealed. More precisely, a commitment scheme allows
the committer to compute to a value msg a pair (com, decom) such that com reveals nothing
about the value msg but using the pair (com,decom) one can open msg. Moreover it should
be infeasible to find a value decom′ such that (com, decom′) reveals msg′ 6= msg.

6.1 The Commitment Scheme Ideal Functionality

In the UC world, the commitment scheme is realized by the (bounded) functionality Fcom as
follows: Fcom receives an input (commit, sid, ssid,msg) from some committer Pi where msg is
the value committed to. After verifying the validity of the session identifier sid, Fcom records

16

the value msg. Subsequently, the functionality lets both the receiver Pj and the adversary S
know that the committer has committed to some value by computing a public delayed output
(receipt, sid, ssid) and sending it to Pj (this phase is called the commitment phase).

To initiate the decommitment phase, the committer Pi sends (open, sid, ssid) to the func-
tionality Fcom. Thereupon, Fcom checks if there exists a value msg; if so, the functionality com-
putes a public delayed output (open, sid, ssid,msg) and sends it to Pj . When the adversary
corrupts the committer by sending (corrupt− committer, sid, ssid) to Fcom, the functionality
reveals the recorded value msg to the adversary S. Furthermore, if the receipt value was not
yet delivered to Pj , then Fcom allows the adversary to modify the committed value. This is
in order to deal with adaptive corruptions. The ideal functionality for commitment schemes
Fcom is given in Figure 5.

Fcom is parameterized by an integer N and runs with parties Pi, Pj , and adversary S. It
initially sets (n, S,R) = (1,⊥,⊥).

The functionality ignores any commit-input if n > N , or if n > 1 and (S,R) 6= (Pi, Pj) for
the parties’ identities in the input. Else,

• Upon receiving input (commit, sid, ssid, Pi, Pj ,msg) from party Pi, Fcom proceeds as
follows:

? Records msg, generate a public delayed output (receipt, sid, ssid), and send the
output to Pj . Increment n to n+ 1 and store (S,R) = (Pi, Pj) if now n = 2.

• Upon receiving input (open, sid, ssid) from party Pi, Fcom proceeds as follows:

? If a value msg is recorded, generate a public delayed output (open, sid, ssid,msg)
and send it to Pj .

? Otherwise, do nothing.

• Upon receiving the input (corrupt− committer, sid, ssid) from the adversary S, Fcom

proceeds as follows:

? Send the value msg to S.

? If S provides a value msg′ and the receipt output was not yet written on Pj ’s tape,
then S can change the recorded value to msg′.

Figure 5: The ideal functionality for commitment schemes adapted from [4].

6.2 PUF-based Commitment Scheme

We now provide a universal transformation from OT-protocols to bit commitment schemes
which —to our knowledge— has not been considered so far. Previous transformations [23, 9]
rely on cut-and-choose and require linear many executions of the OT-protocol. Our transfor-
mation only requires a single additional message to be sent after executing the OT-protocol.
The main idea of the protocol in Figure 6 is to inverse the roles of the sender and the receiver.

17

The OT-protocol transfers two secrets, and the committer only learns one of them, namely
the one corresponding to its secret bit b. This secret is then used to open the commitment.

Sender Pi session sid Receiver Pj

Repeat at most N times with fresh ssid:

Input: b ∈ {0, 1}

FOT

Draw s0, s1
$← {0, 1}λ

(choose− secretOT, b)−−−−−−−−−−−→
(sendOT, (s0, s1))←−−−−−−−−−−−

v := sb
(deliverOT, sb)←−−−−−−−−−−−

(sendauth, sid, ssid, b, v)
−−−−−−−−−−−→ v = sb ?

Figure 6: Commitment scheme with FOT.

Theorem 6.1 The commitment protocol in Figure 6 securely UC-realizes the functionality
Fcom in the FOT-hybrid model.

If functionality FOT is replaced by some OT-protocol, then the derived commitment pro-
tocol basically inherits the characteristics of the OT-protocol. That is, it is secure against
adaptive corruptions if OT is, and it is statistically secure if OT is. Remarkably, we show in
the next section that our PUF-based OT-protocol, while being only statically secure, makes
the commitment scheme even adaptively secure.

We merely provide a proof sketch for Theorem 6.1 here. Note that in the case where both
users are honest, only the modeling of the final message needs to be taken into consideration.
The simulator learns the secret bit b from the commitment functionality Fcom. It then draws a
random string v from {0, 1}λ and sends (sendauth, sid, ssid, b, v). If the receiver is dishonest,
then it provides FOT with two secrets s0, s1. The simulator lets the sender provide a random
bit b′ to the simulated FOT. It receives back the secret sb′ . In the opening phase, S learns the
(real) secret bit b from the commitment functionality and simulates the final protocol message
as (sendauth, sid, ssid, b, sb). If the sender is corrupt then it provides the simulated FOT with a
secret bit b. The simulator creates two random strings s0, s1 and passes them to the simulated
FOT which passes sb to the receiver. The simulator commits to the sender’s bit b in the ideal
world. If the sender sends a message (sendauth, sid, ssid, b, v) then S checks if sb = v. If so, it
instructs Fcom to open the commitment.

All simulations are perfect.

6.3 Adaptively Secure Commitments

Consider the concrete commitment protocol where we plug in our OT-protocol from the pre-
vious section into the abstract scheme above (and work in the FPUF-hybrid model instead of

18

the FOT-hybrid model then), then we observe the following: In the commitment phase (i.e.,
the OT-phase), the message sent by the OT-receiver (=commitment sender) is statistically
independent from its secret input: the OT-receiver merely sends a single uniformly random
message.

For the OT-sender, this is not the case: When having access to the PUF, one can extract
both secrets from the mere transcript of the protocol. This enables the simulator S to derive
both secrets from the protocol, as it accesses the PUF. It can thus provide the simulated com-
mitter with open messages for both bit values. As the remaining part of the committer’s state
merely consists in challenge-response-pairs, the simulator can thus provide genuine internal
state.

7 Key Exchange with PUFs

In a key exchange (ke) protocol two parties interact over an insecure network to establish a
common secret key κ. This common secret key can then be used to build a secure channel or
to ensure confidentiality of transmitted data.

7.1 The Key Exchange Ideal Functionality

The main idea of the key exchange ideal functionality Fke is the following: if both parties
are honest, the functionality provides them with a common random value which is invisible
to the adversary. If one of them is corrupted, though, the adversary determines the session
key entirely thus modeling the participation of a corrupted party. The definition of the key
exchange functionality Fke is depicted in Figure 7 adapted from [7].

7.2 Minimal Requirements

We present a key exchange protocol in Section 7.3 which sends a PUF in a setup phase.
Afterwards, a single message per protocol execution is sent via a unidirectional authenti-
cated channel. As mentioned in the introduction, it is desirable to circumvent the use of
complexity-theoretic assumptions. However, for practical reasons, PUF transfers should also
be minimized. If only a single PUF transfer occurs, then the assumption of a unidirectional
authenticated channel cannot be dropped: The sender of the PUF measured the PUF several
times and sent it to the receiver. The adversary can query the PUF during its transition. If
the sender does not have any further secret information for authentication, then the adversary
can can carry out the same computations as the sender. Thus, the protocol cannot be se-
cure against impersonation attacks. In the following, we use the standard bidirectional Fauth

functionality. Deriving corresponding unidirectional definitions is straightforward.

19

Fke is parameterized by an integer N and receives as input a security parameter 1λ, and
runs with parties P1, ..., Pn and adversary S. Fke obtains a list of corrupt parties. It
initially sets (n, S,R) = (1,⊥,⊥).

Ignore any establish− sessionke-input if n > N , or if n > 1 and (S,R) 6= (Pi, Pj) for the
parties’ identities in the input. Else,

• (establish− sessionke, sid, ssid, Pi, Pj) is written on Fke’s input tape by a
party Pi. Then Fke stores the tuple (establish− sessionke, sid, ssid, Pi, Pj)
(and refuses if there already is a tuple (establish− sessionke, sid, ssid, Pj , Pi)
or a tuple (establish− sessionke, sid, ssid, Pi, Pj)). Fke outputs
(establish− sessionke, sid, ssid, Pi, Pj) to the adversary S. If both users are honest then
draw a random value κ from {0, 1}λ and store the messages (deliverke, sid, ssid, κ, Pi)
and (deliverke, sid, ssid, κ, Pj). Increment n to n+ 1.
• When S writes (choose− valueke, sid, ssid, Pi, Pj , κ) on Fke’s input tape then
check whether there is a message (establish− sessionke, sid, ssid, Pi, Pj) or a mes-
sage (establish− sessionke, sid, ssid, Pi, Pj) and whether at least one of the users
Pi and Pj is corrupt. If so, store the messages (deliverke, sid, ssid, κ, Pi) and
(deliverke, sid, ssid, κ, Pj).
• S writes (deliverke, sid, ssid, Pi) on Fke’s input communication tape. Check if a tuple
(deliverke, sid, ssid, κ, Pi) is stored. If so, write (deliverke, sid, ssid, κ, Pi) to Pi’s input
tape and delete (deliverke, sid, ssid, κ, Pi). Else, do nothing.

Figure 7: The key exchange ideal functionality adapted from [7].

7.3 PUF-based Key Exchange Scheme

Intuitively, our key exchange protocol proceeds as follows. In an enrollment phase, a server
issues a PUF, measures for a set of randomly chosen challenges the corresponding responses,
and finally ensures a noisy-free PUF measurement by generating for each response r a fuzzy
extractor secret st from a set of random secrets as well as a corresponding helper data p.
The server then sends the PUF to the client. Upon finishing the enrollment phase the server
broadcasts a randomly chosen challenge c including its helper data p to the client and sets
κ = st to obtain the protocol key. The client evaluates the PUF on the challenge c, computes
the corresponding fuzzy secret st due to the helper data p, and obtains the protocol key by
setting κ = st. Consequently, both parties use the fuzzy extractor secret st as their common
protocol key κ.

Theorem 7.1 Protocol PUFKE securely realizes functionality Fke. in the FPUF-hybrid model.

Proof. Throughout all simulations, queries to PUFs are genuinely relayed to the S’s PUF
functionality, and the PUF’s answer is honestly delivered to the querying party.

20

Server Pi Client Pj

(initPUF, sid, Pi, λ)

Repeat N times:

r ← (evalPUF, sid, Pi, c)

(st, p)← Gen(r)

add (c, r, st, p) to L
(handoverPUF, sid, Pi, Pj)−−−−−−−−−→

Repeat at most N times

pick (c, r, st, p)←L

remove the entry from L
(sendauth, sid, ssid, Pj , (c, p))−−−−−−−−−→ r′ ← (evalPUF, sid, Pj , c)

κ = st st← Rep(r′, p)

κ = st

Figure 8: PUF-based key exchange scheme.

Pi and Pj are honest Whenever the functionality Fke sends message (establish− sessionke,
sid, ssid, Pi, Pj) for the first time, the S initiates a PUF and queries it onN random challenges
c1, ..., cN to obtain responses r1, ..., rN . It then computes (sti, pi) ← Gen(ri), and stores all
tuples (ci, ri, sti, pi) in a list L. The simulator S then simulates a handoverPUF and lets the
adversary query the PUF, until the adversary terminates the transition phase. The S sets
the counter n to 1 and continues with the simulation of the first session. This concludes the
simulation of the setup phase.

On receiving a message (establish− sessionke, sid, ssid, Pi, Pj), the simulator S increases
the counter n by one and sends (deliverke, sid, ssid, Pi) to Fke. The party Pi then writes the
key on its local output tape and S is activated again. It simulates that Pi sends the message
(sendauth, sid, ssid, (cn, pn)). When the adversary instructs to deliver the latter message to
Pj , then the simulator S sends (deliverke, sid, ssid, Pi, Pj) to Fke.

Analysis of the simulation: Due to the well-spread domain property, with overwhelming
probability, the adversary did not query the PUF on values closer than dmin to one of the
challenges ci. By response independence, the message (cn, pn) is then statistically independent
from the value st. Hence, the simulation is sound.

The Receiver Pj is corrupt. The simulation of the setup phase is as in the honest case.
On receiving a message (establish− sessionke, sid, ssid, Pi, Pj), the simulator S increases

the counter n by one and writes (choose− valueke, sid, ssid, Pi, Pj , stn) on Fke’s input tape. It

21

is activated again and writes (deliverke, sid, ssid, Pi) to Fke. The party Pi then writes the key
on its local output tape and S is activated again. It simulates that Pi sends (sendauth, sid, ssid,
(cn, pn)). When the adversary instructs to deliver the latter message to Pj , then the simulator
S sends (deliverke, sid, ssid, Pi, Pj) to Fke. The simulation is perfect.

The Sender Pi is corrupt. The S allows the malicious user Pi to instantiate an arbitrary
number of PUFs. The receiver only accepts a single handoverPUF. When the adversary in-
structs to deliver a message (sendauth, sid, ssid, (c, p)) to Pj , then the S evaluates the PUF on c
to obtain response r and computes st← Rep(r, p). The S lets the corrupt dummy user Pi write
the message (establish− sessionke, sid, ssid, Pi, Pj) on the input tape of Fke and subsequently
passes the messages (choose− valueke, sid, ssid, Pi, Pj , st) and (deliverke, sid, ssid, Pj) to Fke.
The simulation is perfect.

�

8 Conclusion

While our modeling of PUFs is comprehensive enough to cover different PUF types, based on
different technologies, our protocols withstanding temporary adversarial access requires that
the challenge space of the PUF is super-polynomial. Else the adversary could perform a full
read-out. From a technological point of view, currently only optical PUFs satisfy this (see
[25] for an overview). To broaden the set of admissible PUFs one could develop methods to
enlarge the challenge space for PUFs, either by technological means or algorithmically via
domain extensions. In this case, our ideas can be applied as well, but at the cost of efficiency,
essentially increasing the number of PUF tokens to be used.

Acknowledgments

We thank the anonymous reviewers for valuable comments.
The second author was supported by grants Fi 940/2-1 and Fi 940/3-1 of the German

Research Foundation (DFG). This work was also supported by CASED (www.cased.de)

References

[1] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Francois-Xavier Standaert, and
Christian Wachsmann. A formal foundation for the security features of physical functions.
To appear at IEEE S&P, 2011.

[2] Frederik Armknecht, Roel Maes, Ahmad-Reza Sadeghi, Berk Sunar, and Pim Tuyls.
Memory leakage-resilient encryption based on physically unclonable functions. In ASI-

22

ACRYPT, volume 5912 of Lecture Notes in Computer Science, pages 685–702. Springer,
2009.

[3] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. Information theoretic reduc-
tions among disclosure problems. In FOCS, pages 168–173. IEEE, 1986.

[4] Ran Canetti. Universally composable security: A new paradigm for cryptographic pro-
tocols. In FOCS, pages 136–145, 2001.

[5] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable
security with global setup. In TCC, volume 4392 of Lecture Notes in Computer Science,
pages 61–85. Springer, 2007.

[6] Ran Canetti and Marc Fischlin. Universally composable commitments. In Advances in
Cryptology - Crypto 2001, volume 2139 of Lecture Notes in Computer Science, pages
19–40. Springer-Verlag, 2001.

[7] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and
secure channels. In EUROCRYPT, volume 2332 of Lecture Notes in Computer Science,
pages 337–351. Springer, 2002.

[8] Ran Canetti and Tal Rabin. Universal composition with joint state. In Crypto, volume
2729 of Lecture Notes in Computer Science, pages 265–281. Springer, 2003.

[9] Claude Crépeau. Equivalence between two flavours of oblivious transfers. In CRYPTO’87,
volume 293 of Lecture Notes in Computer Science, pages 350–354. Springer, 1988.

[10] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM J. Comput.,
38(1):97–139, 2008.

[11] Keith B. Frikken, Marina Blanton, and Mikhail J. Atallah. Robust authentication using
physically unclonable functions. In ISC, volume 5735 of Lecture Notes in Computer
Science, pages 262–277. Springer, 2009.

[12] Blaise Gassend, Marten van Dijk, Dwaine E. Clarke, Emina Torlak, Srinivas Devadas,
and Pim Tuyls. Controlled physical random functions and applications. ACM Trans. Inf.
Syst. Secur., 10(4), 2008.

[13] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218–229.
ACM, 1987.

23

[14] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. One-time programs. In
CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 39–56. Springer,
2008.

[15] Vipul Goyal, Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. Interactive locking,
zero-knowledge pcps, and unconditional cryptography. In CRYPTO, volume 6223 of
Lecture Notes in Computer Science, pages 173–190. Springer, 2010.

[16] Vipul Goyal, Yuval Ishai, Amit Sahai, Ramarathnam Venkatesan, and Akshay Wadia.
Founding cryptography on tamper-proof hardware tokens. In TCC, volume 5978 of Lec-
ture Notes in Computer Science, pages 308–326. Springer, 2010.

[17] Jorge Guajardo, Sandeep S. Kumar, Geert-Jan Schrijen, and Pim Tuyls. Fpga intrinsic
pufs and their use for ip protection. In Proceedings of the 9th international workshop on
Cryptographic Hardware and Embedded Systems, pages 63–80. Springer-Verlag, 2007.

[18] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom
generator from any one-way function. SIAM J. Comput., 28(4):1364–1396, 1999.

[19] Carmit Hazay and Yehuda Lindell. Constructions of truly practical secure protocols using
standard smartcards. In ACM Conference on Computer and Communications Security,
pages 491–500. ACM, 2008.

[20] Dennis Hofheinz, Dominique Unruh, and Jörn Müller-Quade. Universally composable
zero-knowledge arguments and commitments from signature cards. In In Proc. of the 5th
Central European Conference on Cryptology MoraviaCrypt 2005, 2005.

[21] Tanya Ignatenko, Geert-Jan Schrijen, Boris Skoric, Pim Tuyls, and Frans M. J. Willems.
Estimating the secrecy rate of physical uncloneable functions with the context-tree weight-
ing method. In Proc. IEEE International Symposium on Information Theory 2006, pages
499–503, Seattle, USA, July 2006.

[22] Jonathan Katz. Universally composable multi-party computation using tamper-proof
hardware. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in Com-
puter Science, pages 115–128. Springer, 2007.

[23] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31. ACM,
1988.

[24] Daihyun Lim. Extracting secret keys from integrated circuits. Master’s thesis, MIT, 2004.

[25] Roel Maes and Ingrid Verbauwhede. Physically Unclonable Functions: a Study on the
State of the Art and Future Research Directions, section 1. Towards Hardware-Intrinsic
Security. Springer, 2010.

24

[26] Tal Moran and Gil Segev. David and goliath commitments: Uc computation for asym-
metric parties using tamper-proof hardware. In EUROCRYPT, volume 4965 of Lecture
Notes in Computer Science, pages 527–544. Springer, 2008.

[27] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Crypto, volume 2442 of Lecture Notes in Com-
puter Science, pages 111–126. Springer, 2002.

[28] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld. Physical one-way functions. Science,
297:2026–2030, 2002.

[29] Ravikanth Srinivasa Pappu. Physical One-Way Functions. Phd thesis, Massachusetts
Institut of Technology, Massachusetts Institut of Technology, March 2001.

[30] Ulrich Rührmair. Oblivious transfer based on physical unclonable functions. In TRUST,
volume 6101 of Lecture Notes in Computer Science, pages 430–440. Springer, 2010.

[31] Ulrich Rührmair, Jan Sölter, and Frank Sehnke. On the foundations of physical unclon-
able functions, 2009.

[32] Ahmad-Reza Sadeghi, Ivan Visconti, and Christian Wachsmann. Enhancing RFID Secu-
rity and Privacy by Physically Unclonable Functions. Towards Hardware-Intrinsic Secu-
rity. Springer, 2010.

[33] B. Skoric, S. Maubach, T. Kevenaar, and P. Tuyls. Information-theoretic analysis of
coating pufs. Technical report, Philips Research Laboratories, 2006.

[34] Boris Skoric, Stefan Maubach, Tom Kevenaar, and Pim Tuyls. Information-theoretic
analysis of capacitive physical unclonable functions. Journal of Applied physics, 100,
2006.

[35] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for device authen-
tication and secret key generation. In Proceedings of the 44th annual Design Automation
Conference, DAC ’07, pages 9–14, New York, NY, USA, 2007. ACM.

[36] P. Tuyls, B. Skoric, S. Stallinga, T. Akkermans, and W. Ophey. Information-theoretic
security analysis of physical uncloneable functions. In Andrew S. Patrick and Moti Yung,
editors, Financial Cryptography and Data Security, volume 3570. Springer Berlin / Hei-
delberg, 2005.

[37] Pim Tuyls, Geert-Jan Schrijen, Boris Skoric, Jan Geloven, Nynke Verhaegh, and Rob
Wolters. Read-proof hardware from protective coatings. In CHES, pages 369–383, 2006.

25

[38] Pim Tuyls, Boris Skoric, Tanya Ignatenko, Frans Willems, and Geert-Jan Schrijen. En-
tropy estimation for optical pufs based on context-tree weighting methods. In Pim Tuyls,
Boris Skoric, and Tom Kevenaar, editors, Security with Noisy Data, pages 217–233.
Springer London, 2007.

[39] Pim Tuyls, Boris Skoric, and Thomas Andreas Maria Kevenaar. Security with Noisy
Data: Private Biometrics, Secure Key Storage and Anti-Counterfeiting. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2007.

[40] Stefan Wolf and Jürg Wullschleger. Oblivious transfer is symmetric. In EUROCRYPT,
volume 4004 of Lecture Notes in Computer Science, pages 222–232. Springer, 2006.

Appendix

A Security Proof for the OT-Protocol of Section 5

As only static corruptions are considered, we can distinguish the simulation depending on the
corrupted parties being involved. Our simulator S runs a black-box simulation of adversary A,
emulating the communication of honest parties with the limited information provided in the
ideal model, and such that S can use the adversary to reply to the environment. As explained,
for non-programmability we consider restricted simulators which faithfully initialize a PUF
and allow the environment straight access when the PUF is in possession of the simulator. In
the analysis below we analyze only a single execution; the argument extends straightforwardly
to the at most N runs.

Simulating the case that both parties are honest.

• Whenever FOT writes (sendOT, sid, ssid, Pi, Pj) to the communication input tape of S
in the ideal world, then this message indicates in the real world that Z wrote two secrets
(s0, s1) to the communication input tape of Pi. S now draws two random values (s′0, s

′
1)

as fake secrets and writes them to the local input tape of the simulated Pi in the ideal
world. The simulator S then chooses two random values x0, x1 ∈ {0, 1}λ as the real Pi
and runs the Pi algorithm which will write (sendauth, sid, ssid, Pi, Pj , (x0, x1)) to the
simulated copy of Fauth.

• If at some point, FOT outputs (choose− secretOT, sid, ssid, Pi, Pj), then S draws a
random bit b and writes it to the local input tape of the simulated copy of the user Pj .

• All participants, i.e., the simulated parties, FPUF, and A might write on the (simulated)
input tapes of each other and are activated upon receiving input to run according to
their program. As long as they produce no local output, S simply relays and activates
its respective subroutines.

26

• If one of the simulated honest users Pj produces local output, then this indicates that the
corresponding session sid finished running the protocol. Note that only the receiver Pj
produces an output in this protocol and would output the secret sb to the environment
as the real Pj . In this case, S writes (deliverOT, sid, ssid, Pi, Pj) on the input tape of
FOT.

In the setup phase, A and Z had access to the PUF used in the protocol and may make
polynomially many measurements. We show that with high probability, for the adversary A,
the sequence of strings (x0, x1, c⊕ xb, s0 ⊕ st0, s1 ⊕ st1) looks like a random 5-tuple of strings.
Towards this goal, we are going to show that with high probability, the five random variables
corresponding to each of the entries are almost uniformly and independently distributed. As
dependence is a symmetric property, it suffices to show that no random variable depends on
the previous ones: x0 and x1 are drawn independently at random; c⊕xb is defined by drawing
c at random and then Xoring it to xb; the distribution of c ⊕ xb is independent from x0, x1
and b. The well-spread domain property (see Subsection 3.2) assures that with overwhelming
probability, the adversary did not query the PUF on challenges closer than dmin from x0⊕c⊕xb
or x1⊕ c⊕xb. Assume from now on that this is indeed the case. Then, due to the well-spread
domain property (see Subsection 3.2), the first outputs of Gen(r′0) and Gen(r′1) are distributed
almost according to U`. Even when observing the helper data, their statistical distance from
U` is at most ε(λ) and, thus, their statistical distance from distributions corresponding other
challenges (and other values (x0, x1, c ⊕ xb)) is at most 2ε(λ) and thereby negligible which
concludes the analysis.

Receiver is corrupt. We next consider the case where the sender Pi is honest and the
receiver Pj is dishonest. The simulator S observes the dishonest receivers’ PUF queries (made
by A and Z) in the setup phase and stores the challenge-response pairs in a list L. Those will
later help the simulator to extract secret bits in the protocol execution. The simulator also
keeps an initially empty list of challenge values C.

Whenever FOT writes (sendOT, sid, ssid, Pi, Pj) on the input tape of S then the simulator
S draws a pair of random values (x0, x1) from {0, 1}λ and sends (sid, Pi, Pj , (x0, x1)) in the
simulation. When A instructs the simulated Pj to send v to Pi as in the real world, simulator
first checks if dis(v ⊕ x0, C) > dmin and dis(v ⊕ x1, C) > dmin. If so, the simulator S checks
for each (c, r) ∈ L, if either the hamming distance of c and v ⊕ x0 is smaller than dmin, or if
the hamming distance of c and v ⊕ x1 is smaller than dmin. With overwhelming probability,
for a single challenge c, both cases cannot occur simultaneously, as dis(c, v ⊕ x0) < dmin and
dis(c, v⊕ x1) < dmin implies dis(v⊕ x0, v⊕ x1) < 2dmin and dis(x0, x1) < 2dmin, but due to the
well-spread domain property, the latter only occurs in negligibly many cases. We established
that for a single challenge, only one of the statements can hold. We now show that with
high probability, either there are no challenges in L close to v ⊕ x0, or there are none which
are close to v ⊕ x1. Assume, the adversary had non-negligible probability that there are

27

c0, c1 in his list of previously made queries to the PUF, such that dis(c0, v ⊕ x0) < dmin and
dis(c1, v ⊕ x1) < dmin. It follows that dis(c0 ⊕ x0 ⊕ x1, c1) < 2dmin, or, equivalently, that
dis(x0 ⊕ x1, c0 ⊕ c1) < 2dmin. Now, x := x0 ⊕ x1 is a random value which, since A has at this
point already made all queries, independent of any c-values which A has evaluated the PUF
for. Thus, if A has non-negligible probability of having chosen such two challenges c0 and c1,
then this must hold for a non-negilible fraction of values x ∈ {0, 1}λ. Let p(λ) the number of
challenges, the adversary queried. Then, the sums of two different challenges ci and cj are at

most
(
p(λ)
2

)
= 1

2p(λ)(p(λ)− 1) which is a negligible fraction of 2λ. If we multiply this number
by the number of elements in a ball of radius 2dmin, then the property still holds, as 2dmin is
still in o(λ/ log λ). Hence, A cannot cover a non-negligible number of values x.

If there only exist challenges c with disham(x0, v ⊕ c) < dmin, then set b := 0. If there only
exist challenges c with disham(x1, v ⊕ c) < dmin, then set b := 1. If no such challenge exists,
then draw b←{0, 1} at random. The simulator S now sends (sendauth, sid, ssid, Pj , Pi, v) in
the simulation. Since Pj is dishonest, S can now write (choose− secretOT, sid, ssid, Pi, Pj , b)
on the input tape of FOT, and, upon receiving the message (choose− secretOT, sid, ssid,
Pi, Pj), S writes (deliverOT, sid, ssid, Pi, Pj) on the input tape of FOT which passes the
message (deliverOT, sid, ssid, Pi, Pj , sb) to the corrupt user Pj and consequently to the sim-
ulator S which uses this value to compute a simulated output for Pj which is controlled
by A. The simulator S picks a random value s1−b←{0, 1}λ. In response to the message
(sendauth, sid, ssid, Pi, Pj , v), simulator uses the PUF and Gen to determine st0, p0, st1 and
p1. The simulator S then passes (sendauth, sid, ssid, Pi, Pj , (s0 ⊕ st0, p0, s1 ⊕ st1, p1)) to the
simulated Fauth.

We now demonstrate that the joint view of Z and A in the protocol execution is indis-
tinguishable from the joint view of Z and the simulated A with S in the ideal world model.
The only difference between the two executions is the final message (s0 ⊕ st0, p0, s1 ⊕ st1, p1)
received by Pj . The checks performed assure that A did not query the PUF on any challenge
with distance smaller than dmin from v ⊕ x1−b. Thus, by response independence (see Subsec-
tion 3.2), st1−b is quasi uniform even in the presence of p1−b. Thus, from the point of view of
A, the value (s1−b ⊕ st1−b, p1−b) is identically distributed for all values s1−b.

Sender is corrupt. We finally assume that the sender Pi is dishonest and the receiver Pj
is honest. The S will use its permanent PUF access to extract the secrets (s0, s1) from the
dishonest sender. We now describe the simulation in detail: The simulator S waits for two
conditions to be satisfied in arbitrary order:

• A instructs the malicious party Pi to send (sid, ssid, Pi, Pj , (x0, x1)) in the simulation.

• The ideal functionality FOT writes (choose− secretOT, sid, ssid, Pi, Pj) on the input
tape of S.

28

The simulator S then draws a random string v←{0, 1}λ and returns it to Pi. When A instructs
Pi to send (sid, ssid, Pi, Pj , a0, p0, a1, p1) to Pj , then S extracts the secrets s0, s1 as follows:
The simulator S evaluates the PUF on v⊕x0 and v⊕x1 to get responses r0 and r1. It then uses
the helper data p0, p1 and Rep to obtain st0 and st1. If one of the two Rep evaluation fails, then
the corresponding value s0/s1 is set to be the empty value ⊥. Else, they are set to be s0 := st0⊕
a0 and s1 := st1⊕a1. The S then writes (sendOT, sid, ssid, Pi, Pj , (s0, s1)) on the input tape of
the ideal functionality FOT and also instructs it with the message (deliverOT, sid, ssid, Pi, Pj).

We now show that the simulation for the case that Pi is dishonest is indistinguishable from
the real world execution. This is the case (1) since in both world the message received by
Pi is a uniformly random string; and (2) since the output of Pj is the same in both world
executions. We elaborate on the latter: If Pj has input bit b = 0 then it would proceed as
the simulator S did to compute s0. If Pj has input bit b = 1 then it would compute s1 in the
same way as the simulator S.

B Complexity Theoretical Background on UC and PUFs

It is currently not known whether PUF distributions are simulatable by a probabilistic poly-
nomial time (PPT) Turing machine. If so, then the UC framework allows to integrate PUFs
easily. However, if they are not, then the UC theorem needs to be extended, because a PPT
algorithm which has access to a PUF is computationally strictly stronger than a common PPT
algorithm. It is thus important to investigate whether the environment Z, the adversary A,
and the simulator S need to have access to a PUF.

When an algorithm is called a PUF-algorithm/-adversary/-simulator/-environment, then
this means that it is a PPT algorithm which additionally has access to a PUF-functionality as
described in Subsection 4.2 with the difference, that only initPUF and evalPUF queries may be
asked. We sometimes also call this PUF-power or complexity PPT+PUF. This means, that
the algorithm locally owns a PUF which it uses for computation. Moreover, these algorithms
may “share” PUFs, and they may share PUFs with honest parties which use the PUFs during
protocols. In the following, it is devoted to provide a clear and surprisingly simple view on
the different possibilities to handle this issue as well as an analysis of compatibility with the
universal composition theorem.

In the remaining part of this section, PUFs are considered not to be PPT simulatable.
However, the observations do not become obsolete in case this claim turns out to be wrong,
in particular because of programmability considerations. We will come back to this question
in the end of this section.

B.1 PUF Access Models

We first argue that the real world adversary A and the simulator S both need to access
PUFs and then investigate delicately on the different possibilities for PUF availability of the

29

environment.
We consider protocols that use PUFs. Thus, as a matter of fact, the real world adversary

A may access PUFs through any of the corrupted parties taking part in the protocol. Thus,
we consider the adversary A to have PUF-power. Consequently, the simulator S needs to be
provided with PUF-power too. Else, any environment would trivially be able to distinguish
the real world from the ideal world, as for A could send samples from its PUF to Z. If S
tries to simulate those, it fails because the PUF distribution is not PPT-simulatable so that
the environment Z manages to distinguish the two adversaries easily irrespective of which
protocol is considered.2

We now turn to the environment Z. Figures 9, 10, and 11 illustrate different solutions to
the problem. In Figure 9, the environment Z does not access any PUF, whereas in Figure
10, the environment has PUF-power. However, the adversary and the environment do not
necessarily operate on the same PUF instance. This model merely takes care of the fact
that the environment has the same computational power as the adversaries. In Figure 11,
the environment as well as the adversary A and the honest protocol participants access the
same PUF functionality and thus possibly the same instance. This setting corresponds to the
extend UC framework with shared functionalities [5].

Z

A
PUF

Figure 9: The environment
Z does not access a PUF.

Z

A
PUF

PUF

Figure 10: The environment
Z and the adversary A each
access different PUFs.

Z

A
PUF

Figure 11: The environment
Z, the adversary A and the
protcol participants all ac-
cess the same PUF.

The first model should generally be discarded. If a PUFs add indeed computational power
exceeding PPT, then providing security only against mere PPT algorithms is a weak choice
and on top technically challenging, as the achieved security level is insufficient for universal
composition in the presence of PUFs. See Subsection B.2 for inspection of the UC theorem
and background on this issue.

We now turn to the second model. The adversary A and Z may exchange arbitrary
information — at a first glance, it seems unnatural to require that they may not share the

2More precisely, we are assuming here that it is even hard for PPT algorithms to produce indistinguishable
distributions from PUF distributions.

30

same PUF. On the other hand, one might get the impression that there is no major difference
between giving Z direct access to the PUF and providing the access through A. But indeed,
there is. In the second model, the simulator S is far more powerful. The simulator simulates
A and thus controls A’s access to the PUF. Thus, S can fiddle with the PUF’s output (consult
Figure 12) and thereby program the PUF behavior. In the third model, the environment Z is
provided with direct access to the PUF. Thus, the simulator S may not provide manipulated
PUF answers to A, as those get detected by Z, see Figure 13.

Z

PUF

S

A

Figure 12: The simulator S can fiddle with
the PUF’s answers without being detected by
Z.

Z

PUF

S

A

Figure 13: The PUF answers provided to Z
by A through S need to be consistent with
the answers provided to Z by PUF directly.

This issue is comparable to programmability of random oracles. As observed by Nielsen
[27], programmability of random oracles trivially allows to realize certain cryptographic tasks
which are provably not achievable without programmability. For instance, without additional
assumptions, commitment schemes are known not to be realizable in the plain UC model
[6]. Moreover, Canetti and Fischlin [6] provided a UC-secure commitment scheme in the
programmable common random string model. Later, Canetti et al. [5] extended the original
impossibility result to the non-programmable common reference string model thus showing
that programmability assumption cannot be removed. One would expect the same results to
carry over for the situation of PUFs. However, querying a PUF is not a public operation
as opposed to random oracle evaluation and accessing a common reference strings. Hence,
the impossibility results do not directly carry through so that we were able to provide secure
protocols in the non-programmable model for the three prominent tasks of oblivious transfer
(Section 5), commitments (Section 6) and key exchange (Section 7). From now on, the non-
programmable UC model with PUFs is called PUC, and the model depicted in Figure 10 is
denoted as weak PUC.

All protocols are shown to be secure for static corruptions only. In Section B.5, we show
that the requirements to realize oblivious transfer in PUC while allowing adaptive corruptions
are very stringent. In Subsection B.2, we show that the composition theorem carries through
in PUC as well as in weak PUC.

31

B.2 The Composition Theorem

We first give a short reminder of UC notations and theorems. A protocol ρ is said to UC-
emulate a protocol φ if for all adversary A there is a simulator S such that for all environments
Z, the output of the environment Z running with φ and A, written EXECφ,A,Z is computa-
tionally indistinguishable from the output of the environment Z running with ρ and S, written
EXECρ,S,Z .

Canetti [4] proved that the notion of UC-emulation, i.e.,

∀A ∃S ∀Z EXECφ,A,Z ≈ EXECρ,S,Z

is equivalent to
∃S ∀Z EXECφ,D,Z ≈ EXECρ,S,Z

where D is the dummy adversary which only executes instructions given by the environment
Z and relays answers to the environment Z. The notation πφ denotes that the protocol π
invokes φ as a subroutine. The notation πρ/φ means that π invokes ρ instead of φ.

Theorem B.1 (Composition Theorem) Let πφ, ρ and φ be three protocols. If ρ UC-
emulates φ, then πρ/φ UC-emulates πφ.

We then obtain the following corollary which is the claim usually used when considering UC-
security.

Corollary B.2 Let ρ be a protocol which UC-emulates a functionality F and let πF be a
protocol which UC-simulates a functionality G. Then, πρ/F UC-emulates G.

We will first shortly summarize the proof of Corollary B.2 and then consider the proof of
Theorem B.1. In Section B.4 and Section B.3, we then analyze where to be cautious when
interacting with non-PPT algorithms such as PUFs.

Canetti proves Corollary B.2 as follows: Theorem B.1 assures that for every adversary
A there is a simulator Aπ such that for all environments Z, one has EXECπF ,AF ,Z ≈
EXECπρ/F ,A,Z . As πF UC-emulates G, for every Aπ there is a simulator S such that for
all environments Z, EXECG,S,Z ≈ EXECπF ,AF ,Z , and the result follows by transitivity of ≈.

The proof of Theorem B.1 is along the following lines: Assume Sρ is such that for all Zρ,

EXECφ,Dρ,Zρ ≈ EXECρ,Sρ,Zρ ,

see Figure 14 and Figure 15. Then, one constructs an adversary Aπ(Sρ) as a black-box con-
struction from Sρ, and one shows thatAπ satisfies for all environment Zπ that EXECπφ,Dπ ,Zπ ≈
EXECπρ/φ,Aπ ,Zπ , see Figure 16 and Figure 17.

Assume, the latter does not hold, and let Zπ be an environment that falsifies the state-
ment. Then, one constructs an environment Zρ(Zπ) such that Relation B.2 is falsified. The

32

D½

Z½

Figure 14: The environment Zρ runs with ρ
and the dummy adversary Dρ.

S
D

Z½

½

½

Figure 15: The environment Zρ runs with φ
and the simulator Sρ. The latter runs Dρ as
a subroutine.

D

Z¼

¼

Figure 16: The environment Zπ runs with
πρ/φ and the dummy adversary Dπ.

S
D¼

A¼

Z¼

½

Figure 17: The environment Zπ runs with πφ

and Aπ. The adversary Aπ runs S and the
dummy adversary Dπ as subroutines.

constructions and their analysis on a high-level work as follows: Aπ runs Sρ as a subroutine in
order to transform network outputs of the protocol ρ into simulated outputs of the protocol
φ. For network outputs of the protocol π itself, Aπ simply relays the outputs of the honest
parties to Dπ. Now, the construction of Zρ(Zπ) is as follows: Zρ simulates the honest parties
as the run π. It relays all inputs of Zπ to these simulated parties. Whenever these parties
activate an instance of φ then Zπ passes these inputs to the real parties (which either run φ or
ρ dependent on whether one is in the real or in the simulated world). Zρ produces the same
final output as Zπ. See also Figure 18 and Figure 19. By inspection of the code, one is able
to show that the view of Zπ is identical in both situations, and thus, Zρ(Zπ) distinguishes φ
from ρ whenever Zπ distinguishes πφ from πρ/φ.

We now analyze how the proof is affected when the algorithms are not PPT Turing ma-
chines but of complexity PPT+PUF. We consider two different scenarios: PUC and weak

33

D

Z¼

¼

D½

Z½

Figure 18: The environment Zρ runs Zπ and
Dπ as subroutines. It simulates the proto-
col π and invokes instances of φ whenever π
intends to do so.

D

Z¼

¼

Z½

S½

Figure 19: The environment Zρ runs Zπ and
Dπ as subroutines. It simulates the proto-
col π and invokes instances of ρ whenever π
intends to invoke an instance of φ.

PUC.

B.3 The Composition Theorem in weak PUC

First of all, the theorem goes through if all algorithms may use a PUF, as it does not make
a difference to which complexity class the algorithms belong as long as they are part of the
same class so that simulations are possible, i.e., they can be PPT, unbounded, have additional
PSPACE oracles or, as in the present case, access to a PUF. Caution is necessary when
hybrid arguments are involved. The composition theorem uses a hybrid argument over the
(polynomial) number of instances of an invoked protocol. For PPT+PUF, the polynomial
bound on the number of instances is preserved.

Now, we would like to address compatibility issues: If the protocol π uses a PUF, but the
subprotocol ρ does not use a PUF, then it is not sufficient for ρ to be proven secure in the
classic UC setting. The reason is that it will be used in an environment that has PUF-power.
In the proof, this will show up when Zρ is constructed (see Figure 18 and Figure 19). To
simulate π, the environment Zρ needs to access a PUF. Thus, Zρ has PUF complexity. To
make use of the property that Sρ is a good simulator (compare Figure 14 and 15), Zρ should
match the corresponding syntactical requirements. If Sρ is only good for PPT environments,
this does not hold. Thus, if a protocol uses PUFs, all uses subprotocols need to be proven
secure against PUF environments.

Let’s turn to the converse consideration. If πF emulates functionality G and does not use
a PUF, is UC-emulation sufficient, or is weak PUC-emulation necessary, if F shall be realized
by a protocol ρ that uses PUFs. Again, weak PUC-emulation is necessary. Intuitively, this
follows from considering G and πρ/F . The latter protocol uses a PUF while the first one does
not. In the final analysis, thus, both need to be analyzed in the presence of PUFs. Else, they

34

can be distinguished easily. It is in the proof of Corollary B.2 that this becomes apparent:
The proof used that for every PUF-adversary A there is a PUF-simulator Aπ such that for
all PUF-environments Z, one has EXECπF ,AF ,Z ≈ EXECπρ/F ,A,Z . Then, one used that πF

emulates G which means that for every PPT-adversary Aπ there is a PPT-simulator S such
that for all PPT-environments Z, EXECG,S,Z ≈ EXECπF ,AF ,Z . Thus, the latter cannot be

applied to a PUF-environment Z and so the proof of corollary B.2 fails, if πF only provides a
UC-emulation of G instead of a weak PUC-emulation.

We summarize our analysis for weak PUC:

Theorem B.3 (Weak PUC Composition Theorem) Let πφ, ρ and φ be three protocols
which potentially may use PUFs. If ρ weak PUC-emulates φ, then πρ/φ weak PUC-emulates
πφ.

Corollary B.4 Let ρ be a protocol which weak PUC-emulates a functionality F and let πF

be a protocol which weak PUC-simulates a functionality G. Then, πρ/F weak PUC-emulates
G.

None of the two conditions can be weakened to UC-emulation.

B.4 The Composition Theorem in PUC

If all algorithms may access a common PUF functionality, then first of all, as observed in
Subsection B.3, complexity issues are not problematic. Accessing a common functionality
was previously mainly considered for random oracles. The common access provides non-
programmability. However, to satisfy UC-syntax, we must alter our description of PUC
slightly.

The syntactical tweak consists in granting the environment Z access to the PUF through
the adversary but to restrict the adversary to honestly relay PUF queries and answers.

Moreover, the adversary A refuses to relay queries to PUFs that are currently owned by
honest participants, as FPUF does not answer those. The S is required to do exactly the same:
The PUF indices which belong to honest users may not be queried by the environment Z.

B.5 Impossibility Results and Adaptive Corruption

In [6], Canetti and Fischlin show that adaptively secure commitments cannot be realized in
UC. However, they provide a protocol which is secure in the common reference string (CRS)
model. Here, the CRS is considered to be programmable, i.e., the simulator S can use the CRS
to embed secret information which it later uses to simulate the protocol, formally backed up
by the CRS-hybrid model. In [5], Canetti et al. introduce a generalized UC model with global
setup (GUC). In this model, a trusted setup is genuinely generated and available in the ideal
world as well as in the real world. As the setup is considered to be realized once and for all,

35

any external protocol shall be able to use it. Thus, the environment is provided access to the
setup as well.

Again, if the trusted setup in GUC is a common reference string, the environment’s access
prevents the simulator S from manipulating the CRS; the simulator, too, needs to use the
given CRS. Canetti et al. then show that the impossibility result of [6] can be generalized to
GUC when the setup is a CRS. Somewhat surprisingly, this does not apply to PUC.

In the original proof, Canetti and Fischlin use that if there is secure commitment scheme
in UC then there is a simulator S which can produce a commitment c which can later be
opened to arbitrary values. Now, if such a S exists, then the commitment scheme cannot have
been secure from the beginning, as any malicious participant can use the algorithm of S to
produce a fake commitment. The result is based on the fact that all information available
to the S is also available to a malicious participant. Thus, the latter can use a copy of S to
cheat. The proof is based on the assumption that a malicious user (respectively, the adversary
A) has access to the same information as the simulator S. For PUFs, this is not the case.

This implies certain properties of PUC-secure protocols: During the execution of an oblivi-
ous transfer protocol (OT), the sender must have a secret which is not available to the receiver,
as else, the extraction algorithm of the simulator S could be used by the receiver to break
the protocol. We develop this thought further and consider adaptive corruption: We noted
that the OT-protocol becomes insecure when the receiver has access to the PUF during the
protocol execution. Note that usually this also holds after termination of the protocol: Con-
sider the OT-protocol provided in Section 5. Any party which has access to the transcript of
the protocol and the sender’s PUF can extract both secrets from the transcript. Hence, the
protocol is insecure w.r.t. adaptive corruption as corrupting the sender also provides access
to the sender’s PUF — as the simulator S provides a simulation without knowing both se-
crets, thus would reveal to the environment that it interacts with the ideal world. Moreover,
this holds for all protocols where access to the PUF allows to extract both secrets from the
protocol transcript. It is thus necessary to provide a non-committing transcript.

The transcript of the presented OT-protocol is not non-committing w.r.t. to the secrets
of the sender. However, it is non-committing w.r.t. to the secret bit of the receiver, i.e., as
the simulator S has access to a PUF, for each message transcript, it can provide two states
of the receiver, one for each secret bit b. Thus, the commitment scheme which we built in
Section 6 is secure against adaptive attacks when the OT building block is replaced via the
OT-protocol presented in 5. We her re-state the protocol depicted in Figure 20 with explicit
OT subprotocol.

We now show how to react to adaptive corruptions and how to provide state for any of
the two parties at any stage of the protocol. Note that the sender does not have any inputs
from the environment. Thus, all simulations of the receiver (recall that the receiver of the
commitment scheme plays the role of the S in the OT scheme) can be done genuinely and its
genuine state can be passed to the adversary A. For simulation of the sender’s state, note
that the simulator has access to the PUF and gets the secret bit of the committer. The S

36

Sender Pi Receiver Pj

(initPUF, sid0, Pi, λ)

k = 1, ..., `: ck
$← {0, 1}λ

rk = (evalPUF, sid0, Pi, ck)

L := (c1, r1, ..., c`, r`)

C := []
(handoverPUF, sid0, Pi, Pj)←−−−−−−−−− C := []

Input: s0, s1 ∈ {0, 1}λ, sid Input: b ∈ {0, 1}, sid

x0, x1
$← {0, 1}λ

(sendauth, sid, ssid, Pi, Pj , (x0, x1))−−−−−−−−−→ Draw (c, r)
$← L

s0, s1
$← {0, 1}λ v := c⊕ xb, c′ := c⊕ x0 ⊕ x1

dis(c, C) > dmin ?

dis(v ⊕ x0, C) > dmin ?
(sendauth, sid, ssid, Pi, Pj , v)

←−−−−−−−−− dis(c′, C) > dmin ?

dis(v ⊕ x1, C) > dmin ? Add c, c′ to C
Add v ⊕ x0, v ⊕ x1 to C Delete (c, r) in L
r′0 = (evalPUF, sid0, Pi, v ⊕ x0)
r′1 = (evalPUF, sid0, Pi, v ⊕ x1)
(st0, p0)← Gen(r′0)

(st1, p0)← Gen(r′1)

(sendauth, sid, ssid, Pi, Pj , (s0 ⊕ st0, p0, s1 ⊕ st1, p1))−−−−−−−−−→
stb ← Rep(r, pb)

sb = sb ⊕ stb ⊕ st

Accept, if o = sb
(sendauth, sid, ssid, Pi, Pj , b, v)

←−−−−−−−−− o := sb

Figure 20: Adaptively secure commitment scheme with PUFs.

simulates the committer’s state as follows (We simulate the state chronologically in order to
capture all possible corruption moments): The list L can be genuinely generated. The values
c and c′ are set to be c := xb ⊕ v and c′ := c ⊕ x0 ⊕ x1. Set r to be the value returned by
PUF when being evaluated on c. Set o := sb. Note that before the final message is sent, the
simulator S learns the challenge bit b and can compute o accordingly.

C Related Security Properties of PUFs

In this section, we review security properties which are frequently mentioned in the context of
PUFs. We investigate how they relate to our notion and provide complementary formalization.
For an overview on PUF implementations as well as their properties, we refer the reader to

37

[25] for a comprehensive overview.

C.1 Uncloneability of PUFs

Uncloneability is usually considered in two flavors: software-uncloneability and hardware-
uncloneability [29, 39, 25]. Hardware uncloneability, also called physical uncloneability, re-
quires that it is difficult to create a second device whose behavior is indistinguishable from
the first one. For each PUF implementation the authors showed that physical cloning of
their implementation is impossible, see for example [29, 24, 35, 17, 37, 25]. Note that physi-
cal properties are usually infinite properties. However, for cryptographic application, we are
interested in its discrete mathematical behavior as a (noisy) function and thus consider clone-
ability merely with respect to its input/output behavior. Software uncloneability, also called
model building requires that it should be hard to provide a software model of a PUF. Model
building usually considers mere software models, while we additionally allow the software to
use a second, different PUF to achieve its cloning goal.

Our entropy-based notion of unpredictability automatically assures both, software unclone-
ability and hardware uncloneability assuming that the creation process is not controllable.
For a game-based formalization of hardware uncloneability, we refer the reader to [32]. As
software uncloneability implies hardware uncloneability, the below game-based definition is
strictly stronger than the one presented in [32]. Cryptographic applications that allow the
adversary to read out arbitrarily many challenge pairs, require software uncloneability. Note
that, however, in a weakened adversarial model, physical uncloneability can be sufficient.

A PPT algorithm A which intends to clone a PUF1 while having access to arbitrarily
many PUF2,...,PUFn. Now, A might measure the PUF1 on a couple of challenges c1, ..., ck.
The algorithm A then finishes the cloning process. From now on, A is denied access to the
PUF1 and shall simulate its input/output behavior. We now draw a random challenge c. With
high probability (see Appendix C.3), the challenge c is not close to any of the ci. Thus, from
A’s point of view, the entropy on the response value r is high. Thus, information-theoretically,
A has low probability in providing a suitable response. Note that we restrict the observable
parameters of the PUF to be its input/output behavior.

Game UNC(PUF,A, λ)

Learning Phase Proceeding adaptively, the adversary has access to an oracle Sample which
draws a PUF index i from the PUF family according to Sample as well as to Eval oracles
that evaluate PUFi. The index of the first sampling query is denoted by i0.

Simulation Phase Eventually, we withdraw the adversary’s possibility to query PUFi0 . The
adversary can now be queried with input challenge values c. We denote this adversary
by A. For all challenges c, he is required to output answers r that are (computationally)
indistinguishable from answers given by PUFi0 . An (efficient) distinguisher D is given

38

two oracles that are either both equal to PUFi0 , or one oracle equal to A, and one oracle
equal to PUFi0 .

For each (efficient) distinguisher D, we denote by UncA,D(λ) the difference

Prob
[
DA,PUFi0 = 1

]
− Prob

[
DPUFi0 ,PUFi0 = 1

]
.

Definition C.1 (Cloneability of PUFs) A PUF is cloneable if there exists an efficient al-
gorithms A such that for all (efficient) distinguishers D, the distinguishing advantage UncA,D(λ)
is negligible in λ.

Definition C.2 (Uncloneability of PUFs) A PUF is uncloneable if it is not cloneable.

The latter definition is equivalent to the game-based definition of unpredictability provided
in a concurrent paper by Armknecht et al. [1]. Note that Armknecht et al. consider a
combination of a fuzzy extractor and a PUF, while the above definition considers a mere PUF.

C.2 Unpredictability of PUFs

As considered earlier, unpredictability of PUFs states that it is difficult to compute the output
to a chosen stimulus without evaluating the PUF. This property holds even if further CRPs
are given (e.g., one collected several CRPs before). The difference to “regular” unpredictable
functions is that the attacker may indeed be able to predict response values for challenges
which are close to those it measured the PUF on. That is, some PUFs map closely related
measurements to closely related outputs.

We provided a statistical and a computational variant of unpredictability. An alternative
would be to use a game-based definition. Unfortunately, this is not suitable for UC-application.
Note that our UC-definition implies the security notion defined by the following game: The
attacker first collects several PUF measurements for challenge value of its choice up to a certain
moment where it has no longer access to the device. Subsequently, the attacker has to output
a valid challenge/response pair (c∗, r∗) such that the distance between its prediction and all
previously measurements is at least ε. If this conditions is fulfilled and if r∗ ← PUF(c∗), then
the attacker wins the game. We define unpredictability of PUFs in the following game between
a challenger and an adversary A:

Game PRE(PUF,A, λ)

Setup The challenger generates a PUF by running the generation procedure Sample to obtain
a PUF index x.

Queries Proceeding adaptively, the adversary A may query the PUF oracle OPUF on chal-
lenges ci ∈ {0, 1}λ. It returns ri ← PUF(ci) to the attacker and adds ci to a list Q (list
of challenge/response pairs queried by the attacker).

39

Output Eventually, the adversary outputs a pair (c∗, r∗) with c∗ /∈ Q. The game evaluates
the PUF on r ← PUF(c∗). It outputs 1 if the metric distance dis(c∗, c) > ε(λ) for all
c ∈ Q and r = r∗.

We define PreA(λ) be the probability that PRE(PUF,A, λ) outputs 1.

Definition C.3 (Unpredictability of PUFs) A PUF is unpredictable with respect to the
game PRE(PUF,A, λ) if for all efficient algorithms A the probability PreA(λ) is negligible in
λ.

C.3 Uncorrelated Output of PUFs

If challenges are members of close-by regions, their corresponding responses are usually cor-
related, for example in the case of optical PUFs [29, 36]. However, if two challenges c1, c2 are
far away from each other, namely more than dmin, then their responses should not be close to
each other. This property is implied by unpredictability.

If the outputs of two such different challenges were closely correlated, then knowing the
PUF response to challenge c1 would provide more information about the PUF response to c2
than allowed by unpredictability. We now define the intuition of uncorrelated outputs in the
following game:

Game UNCOR(PUF, dmin,A, λ)

Setup The challenger generates a PUF by running the generation procedure Sample to obtain
a PUF index x. The adversary adaptively generates challenges ci which it may query to
a PUF several times in arbitrary order. The tth response to the challenge ci is denoted
by ri,t. Each time the game returns ri,t ← PUF(ci) to the attacker, it adds ci, ri,t to a
list Q.

Output Eventually, the adversary outputs (c∗i , r
∗
i), (c

∗
j , r
∗
j). The game outputs 1 if the queries

output by the adversary are in Q, dis(c∗i , c
∗
j) > dmin(λ) and the metric distance between

the two responses is at most ρ(λ), e.g, dis(r∗i , r
∗
j) ≤ ρ(λ).

We define CorA(λ) as the probability that UNCOR(PUF, dmin,A, λ) returns 1.

Definition C.4 (Uncorrelated Output of PUFs) A PUF satisfies dmin uncorrelated out-
put if for all efficient adversaries A the probability CorA(λ) is negligible in λ.

C.4 One-Wayness of PUFs

One-wayness of PUFs means that evaluating a PUF is easy while inverting it remains hard.
That is, given a response r it should be hard to find a corresponding challenge c such that

40

for r′ ← PUF(c), the responses r and r′ are close. A PUF family is one-way, if no algorithm
A outputs the challenge c with more than non-negligible probability. Note that for PUFs
with a small input ranges one-wayness is not achievable as outputting a random input already
yields a non-negligible probability in inverting the PUF, e.g., simple arbiter PUFs. Moreover,
measuring the PUF on all input values increases the probability to 1.

Our notion of unpredictability is incomparable to one-wayness, i.e., a PUF may satisfy
unpredictability without being one-way, and conversely, a PUF can be one-way while not
satisfying unpreditability. This shows that one-wayness does not imply that the PUF has any
entropy at all which is, however, one of the main stated goals in PUF design3. This shows
that one-wayness as a mere assumption is not sufficient. However, one-wayness is a desirable
property which, however, seems to be hard to realize, as many of the common PUF types
are not one-way, such as arbiter PUFs, ring-oscillator PUFs, SRAM PUFs and coating PUFs.
Towards applicability for many PUF types, we thus discard the assumption of one-wayness.

We now first define one-wayness formally and then turn to the bidirectional separation
between unpredictability and one-wayness.

Game INV(PUF,A, λ)

Setup The challenger generates a PUF by running the generation procedure Sample to obtain
a PUF index x. It picks a challenge c at random and evaluates r ← PUF(c). It hands r
to the adversary.

Output The adversary may adaptively query the PUF and finally outputs a challenge c. The
challenger computes r′ ← PUF(c) and outputs 1 if dis(r′, r) < dnoise.

We define InvA(λ) as the probability that INV(PUF,A, λ) returns 1.

Definition C.5 A PUF is one-way with respect to the game INV(PUF,A, λ) if for all effi-
cient algorithm A the probability InvA(λ) is at most δInv.

The following separations shall illustrate that unpredictability and one-wayness do not imply
each other.

Unpredictability does not imply One-Wayness Assume, a PUF-family satisfies our
notion of unpredictability for suitable parameters. Then, we can define a new PUF-family
PUF∗ which on input challenge c queries PUF on challenge c. The PUF then returns a response
r, and PUF∗ returns as its response R the pair R = (c, r). The high-entropy condition of our
unpredictability notion is still satisfied. However, PUF∗ is not one-way.

3In the first work, Pappu considered PUFs in the context of entropy [29]. Later on, people studied/revisited
the notion of entropy of optical PUFs as well as of further PUF implementations [36, 33, 34, 21, 38]

41

One-Wayness does not imply Unpredictability Let PUF be a family of one-way-
functions {fi}I with efficient descriptions. We define a new function family {f∗i }I as follows:
On input a value c, f∗i outputs fi(c) concatenated with a function description of fi. This con-
struction is still one-way. However, it is not unpredictable. After querying the function on c,
one can easily derive the function value on any other input c′. This concludes the separation.

C.5 Tamper-Resistance

Tamper-resistance means that physical manipulation should be either impossible or easy to
detect, e.g., tampering changes the input/output behavior of the PUF. Our modeling of PUFs
implicitly assumes tamper-resistance, as the attacker is bound on querying the PUF. There
are two ways to approach this topic: One may consider this as a human-related property, i.e.,
manipulating is easy to detect for a human. The other approach would be to assume that
the mathematical behavior becomes atypical, or, that the mathematical behavior becomes
very different. In the latter case, when receiving a PUF, the sender and the receiver needs to
exchange a number of challenge-response pairs, i.e., the sender sends a couple of challenges,
and the receiver returns the PUF’s responses. If they are close enough to the values the sender
has stored in its challenge-response pair list, the sender will confirm that no tempering has
occurred. In our model, this property is implicit. When desired, one can define a more basic
PUF definition which allows the adversary mathematical tempering. One would then show
that this definition can be composed with the above protocol to emulate our PUF definition.
A formalization of this approach is left for future work.

42

